

REPORT

23-1036

December 12, 2023

Explorations and Geotechnical Engineering Services

Mill Bridge Replacement Lynch Road over Dyer Creek Newcastle, Maine

Prepared For: VHB, Inc. Attention: Robert Blunt, P.E. 157 Capital Street, Suite 2 Augusta, ME 04330

Prepared By: S. W. Cole Engineering, Inc. 26 Coles Crossing Drive Sidney, ME 04330 T: 207.626.0600

www.swcole.com | info@swcole.com

Geotechnical Engineering | Construction Materials Testing | Special Inspections

1.0 INTRODUCTION......1 4.2.4.1 Strength Limit State Design......11

TABLE OF CONTENTS

LIST OF APPENDICES

Appendix ALimitationsAppendix BFiguresAppendix CExploration Logs & KeyAppendix DLaboratory Test Results

23-1036

December 12, 2023

VHB, Inc. Attention: Robert Blunt, P.E. 157 Capital Street, Suite 2 Augusta, ME 04330

Subject: Explorations and Geotechnical Engineering Services Mill Bridge Replacement Lynch Road over Dyer Creek Newcastle, Maine

Dear Bob:

In accordance with our Proposal, dated June 6, 2023, we have performed subsurface explorations for the subject project. The purpose of our services was to obtain subsurface information at the site in order to develop geotechnical recommendations relative to foundations and earthwork associated with the proposed bridge replacement. This report summarizes our findings and geotechnical recommendations, and its contents are subject to the limitations set forth in Appendix A.

1.0 INTRODUCTION

1.1 Site Construction

The site is Mill Bridge carrying Lynch Road over Dyer Creek in Newcastle, Maine. The site location is shown on the "Site Location Map" attached in Appendix B. Based on available information, we understand the existing crossing was constructed in 2010 and consists of \pm 14-foot span, concrete box culvert. We understand the existing structure was constructed prior to the dam removal and release of Sherman Lake. Since the removal of the dam, we understand the existing channel has reportedly scoured up to 3 feet and the structure has reportedly settled 3 to 4 inches.

1.2 Proposed Construction

We understand current conceptual design consists of replacing the existing structure with a ± 50 -foot, single-span bridge. We understand bridge support options include H-piles, micropiles, and spread footings. We understand spread footings would be founded on a

mud mat overlying bedrock at the north abutment and glacial till at the south abutment. We understand the replacement structure will generally maintain the existing horizontal alignment and vertical profile.

Proposed and existing site features are shown on the "Exploration Location Plan" attached in Appendix B.

2.0 EXPLORATION AND TESTING

2.1 Explorations

Six test borings (B-101 through B-104, B-102A, B-102B, and B-104A) were made at the site on July 31 and August 1, 2023, by S. W. Cole Explorations, LLC. The exploration locations were selected in consultation with VHB and established in the field by S. W. Cole Engineering, Inc. (S.W.COLE) using measurements from existing site features. The approximate exploration locations are shown on the "Exploration Location Plan" attached in Appendix B. Logs of the explorations and a key to the notes and symbols used on the logs are attached in Appendix C. The elevations shown on the logs were estimated based on topographic information shown on the "Exploration Location Plan".

2.2 Field Testing

The test borings were drilled using a combination of solid stem auger, cased wash-boring, and NQ2 rock coring drilling techniques. The soils were sampled at ±5-foot intervals using a split-spoon sampler and Standard Penetration Testing (SPT) methods using a calibrated automatic hammer. Pocket Penetrometer Tests (PPT) were performed where stiffer cohesive soils were encountered. Upon encountering refusal, borings B-101 and B-104A were advanced 5 to 10 feet into bedrock using NQ2 rock coring. SPT blow counts, PPT results, rock core intervals, and Rock Quality Designation (RQD) are shown on the logs attached in Appendix C.

2.3 Laboratory Testing

Soil and rock core samples obtained from the explorations were returned to our laboratory for further classification and testing. Laboratory testing included five moisture content, two Atterberg limits, one organic content, and three grain size analyses tests. Moisture content, Atterberg Limits, and organic content tests results are noted on the logs. The results of three gradation tests are attached in Appendix D.

3.0 SUBSURFACE CONDITIONS

3.1 Soil and Bedrock

Test borings were made for the proposed replacement structure and encountered a soils profile generally consisting of a surface layer of pavement overlying fill, overlying glaciomarine deposits, overlying glacial till mantling bedrock. The principal strata encountered in the explorations are summarized below. Not all the strata were encountered at each exploration; refer to the attached logs for more detailed subsurface information.

<u>Fill</u>: Below an approximate 3-to-3.5-inch layer of asphalt pavement, the borings generally encountered granular fill extending to depths of about 5 to 10.5 feet, where penetrated. The granular fill generally consisted of medium dense to very dense, sand with varying amounts of gravel and silt. Below the granular fill, boring B-104A encountered fine-grained fill consisting of stiff to very stiff, silt and sand with varying amounts of clay and gravel to a depth of 10.6 feet. Test borings B-102, B-102A, B-102B, and B-104 were terminated in the fill on probable cobbles or boulders at depths of about 3.5 to 10 feet.

<u>Glaciomarine Deposit</u>: Below the fill, where penetrated, borings B-101, B-103, and B-104A encountered glaciomarine deposits to depths of about 14 to 17 feet. The glaciomarine deposit generally consisted of soft to very stiff, silty clay, trace sand with wood. The wood was interpreted as embedded timbers/logs.

<u>Glacial Till</u>: Below the glaciomarine deposits, the borings encountered glacial till consisting of dense, silty gravelly sand with cobbles. The glacial till varied in thickness from about 1 to 7 feet.

<u>Bedrock</u>: Bedrock was encountered at boring B-103 and sampled at borings B-101 and B-104A. The top of bedrock varied from about 15.5 to 24 feet below ground surface and generally consisted of grey, hard, Granofels of the Bucksport Formation. Joints were generally close, horizontal to moderately dipping, and tight to open.

The following table summarizes the approximate depths to bedrock, corresponding top of bedrock elevations, and RQD, where encountered.

Boring Number	Approximate Depth to Refusal/Bedrock (feet)	Approximate Refusal/Bedrock Elevation (feet)	RQD (Rock Quality)		
B-101	23.8	-10	R2: 85% (Good)		
B-103	15.6	-1.6	N/A		
B-104A	17.2	-3.2	R1: 55% (Fair) R2: 53% (Fair)		

RQD values for the bedrock cores ranged from 53 to 85 percent corresponding to a Rock Quality of fair to good. Detailed descriptions of the rock core and RQD values for each core run are shown on the exploration logs in Appendix C. Rock core photographs are shown in Appendix C.

3.2 Groundwater

The soils encountered at the test borings were damp to moist from the ground surface. Water was encountered at depths of about 8 to 10 feet in borings B-101, B-103, and B-104A. Long term groundwater information is not available. It should be anticipated that groundwater levels will fluctuate seasonally, particularly in response to periods of snowmelt and precipitation, as well as changes in site use and the water levels of Dyer Creek.

4.0 EVALUATION AND RECOMMENDATIONS

S.W.COLE conducted geotechnical engineering evaluations in accordance with 2020 AASHTO LRFD Bridge Design Specifications, 9th Edition (LRFD) and the MaineDOT Bridge Design Guide, 2003 Edition with revisions through June 2018 (MaineDOT BDG).

4.1 Foundation Options and Discussion

The site is generally underlain by medium dense to very dense fills, overlying very stiff to soft glaciomarine silty clay with embedded timbers/logs, overlying a thin (1-to-7-foot-thick) layer of dense glacial till with cobbles mantling bedrock at depths of about 15.5 to 24 feet. Bedrock appears to slope downward from north to south with 6 to 8 feet of elevation change between the proposed abutment locations. We understand, based on the site history a single span bridge is the preferred replacement structure.

Spread footing foundations will require braced excavations for temporary excavation support and water cutoff. We anticipate excavations would need to extend 8 to 15 feet below the elevation of Dyer Creek into the underlying glacial till or to bedrock. Regardless

of bearing strata, spread footing foundations would need to be protected from and founded below scour.

Timbers and/or logs were encountered within the glaciomarine silty clay during exploration. We anticipate these obstructions will impede the driving of sheet piles for braced excavations and H-piles for abutment foundations and may require pre-augering or predrilling. Additionally, depending on the lateral loading the thin layer of glacial till soils may not provide sufficient embedment for driven piles to develop fixity without rock sockets.

We understand following preliminary design, spread footings on a mud mat founded on bedrock at the north abutment and on properly prepared glacial till at the south abutment are the preferred foundation support option.

4.2 Foundation Support

Design considerations for spread footings founded on bedrock or glacial till as well as micropile and H-pile supported foundation options are provided in the following sections.

4.2.1 Spread Footing Foundations on Concrete Sub-footing (Seal Pour)

We understand the north abutment and wingwalls will be founded on spread footings bearing on concrete sub-footing overlying bedrock. For spread footings founded on spread footings shall be evaluated for all applicable load combinations specified in LRFD Articles 3.4.1 and 11.5.5 and relevant strength, service, and extreme limit states.

4.2.1.1 Strength and Service Limit State Design

The design of abutments and wingwalls founded on spread footings bearing on concrete seals overlying bedrock shall be designed for all relevant strength and service limit state load combinations per LRFD Article 10.6. Design of spread footings at the strength limit state shall consider bearing resistance, eccentricity, lateral sliding, and reinforced-concrete structural failure.

For spread footings or concrete seals founded on bedrock, the eccentricity of loading at the strength limit state, based on factored loads, shall not exceed 0.45 of the footing dimensions in either direction. The eccentricity corresponding to the resultant of reaction forces shall fall within the middle nine-tenths (9/10) of the base width.

For the service limit state, a resistance factor, ϕ , of 1.0 shall be used to assess spread footing design for settlement, horizontal movement, and bearing resistance. The overall stability of foundations is typically investigated at the Service I Load Combination and a resistance

factor, ϕ , of 0.65. Shear failure along adversely oriented joint surfaces in the rock mass below the foundations is not anticipated; therefore, global stability was not evaluated.

4.2.1.2 Extreme Limit State Design

Extreme limit state design checks for abutments and wingwalls shall include bearing resistance, eccentricity (overturning), failure by sliding, and structural failure with respect to extreme event load conditions relating to seismic forces, hydraulic events, and ice. Resistance factors, ϕ , for the extreme limit state shall be taken as 1.0 except for bearing resistance where a resistance factor of 0.8 shall be used. LRFD Figures C11.5.6-1 and C11.5.6-2 illustrate the typical load factors to produce the extreme factored effect for bearing resistance and sliding and eccentricity.

For scour protection of spread footings or concrete seals, construct the spread footings or concrete seals directly on bedrock surfaces cleaned and free of all weathered, loose, and potentially erodible or scourable rock. With these precautions, strength and extreme limit state designs do not need to consider rock scour for the proposed foundations.

4.2.1.3 Bearing Resistance and Eccentricity

Application of permanent and transient load combinations and applicable load factors are specified in LRFD Article 11.5.6. Based on LRFD Figure 11.6.3.2-2, the stress distribution at the abutments may be assumed to be a triangular or trapezoidal distribution over the effective base.

For abutment and wingwall footings founded on competent, sound bedrock, we recommend the following factored bearing resistances.

Limit State	Bearing Resistance Factor Φ _b	Factored Bearing Resistance (ksf)	LRFD Reference		
Service	1.0	20.0	Article 10.5.5.1		
Strength	0.45	37.7	Table 10.5.5.2.2-1		
Extreme	0.8	66.9	Article C11.5.8		

LRFD Figures C11.5.6-2 and C11.5.6-4 illustrate the typical load factors to produce the strength and extreme factored conditions for evaluating eccentricity. Based on LRFD Article 11.6.3.3, the location of the resultant force for eccentricity evaluation shall fall within the middle nine-tenths (9/10) of the foundation base for foundations bearing on rock.

4.2.1.4 Sliding Resistance

The following table shows the resistance factors, ϕ_{τ} , for sliding analyses of cast-in-place spread footings on bedrock.

Limit State	Sliding Resistance Factor ϕ_{τ}	Reference		
Strength	0.8	LRFD Table C10.5.5.2.2-1		
Service	1.0	LRFD Article 10.5.5.1		
Extreme	1.0	LRFD Article 10.5.5.3.3		

Passive earth pressures due to the presence of soils in front of the abutments and wingwalls shall be neglected in the sliding analysis.

For bedrock subgrade prepared in-the-dry and cleaned with high pressure water and air prior to placing footing concrete, sliding computations for resistance of abutment and wingwall footings to lateral loads shall assume a maximum frictional coefficient of 0.7 at the bedrock-concrete seal interface.

Based on guidance from LRFD Article 10.6.1.5, anchorage of the footing to a concrete seal, if used, is required. The dowels should be drilled and grouted into the concrete seal after dewatering and prior to placing the footing concrete. Anchorage of concrete seals to bedrock may also be required to resist sliding forces and improve stability. If bedrock is observed to slope steeper than 4H:1V at the subgrade elevation, the bedrock should be benched to create level steps or excavated to be completely level.

4.2.1.5 Subgrade Preparation and Construction Considerations

Excavation to the bedrock surface in preparation of a placement of a concrete sub-footing (concrete seal pour) will extend about 7 feet below the highwater level of Dyer Creek. Excavation will require an internally braced support of excavation (SOE) likely consisting of driven sheet piles. Given the slightly sloping bedrock surface, a tight connection between the bottom of the sheet piles and the bedrock surface is not possible, creating a "stair step" effect at the base of the sheets where soil can be transported hydraulically from behind the base of the sheets into the excavation. Care must be taken to reduce the potential for migration of soil into the excavation. Further, sheet piles are unlikely to penetrate the bedrock,

We recommend the excavation be undertaken in-the-dry by pumping the groundwater from within the SOE. The bedrock subgrade must be cleaned with high pressure water and air prior to placing footing.

4.2.2 Spread Footings on Soil Subgrades

We understand the south abutment and wingwalls will be founded on spread footings bearing on glacial till. Spread footings bearing on properly prepared soil subgrades shall be evaluated for all applicable load combinations specified in LRFD Articles 3.4.1 and 11.5.5 and designed for all relevant strength, service, and extreme limit states.

4.2.2.1 Strength and Service Limit State Design

The design spread footings bearing on properly prepared glacial till subgrades shall be designed for all relevant strength and service limit state load combinations per LRFD Article 10.6. Design of spread footings at the strength limit state shall consider bearing resistance, eccentricity, lateral sliding, and reinforced-concrete structural failure.

For spread footings founded on properly prepared glacial till subgrades, the eccentricity of loading at the strength limit state, based on factored loads, shall not exceed 0.45 of the footing dimensions in either direction. The eccentricity corresponding to the resultant of reaction forces shall fall within the middle two-thirds (2/3) of the base width for foundations on soil per LRFD Article 11.6.3.3.

For the service limit state, a resistance factor, ϕ , of 1.0 shall be used to assess spread footing design for settlement, horizontal movement and bearing resistance.

4.2.2.2 Extreme Limit State Design

Extreme limit state design checks for abutments shall include bearing resistance, eccentricity (overturning), failure by sliding and structural failure with respect to extreme event load conditions relating to seismic forces, hydraulic events, and ice. Resistance factors, ϕ , for the extreme limit state shall be taken as 1.0 except for bearing resistance for which a resistance factor of 0.8 shall be used. LRFD Figures C11.5.6-1 and C11.5.6-2 illustrate the typical load factors to produce the extreme factored effect for bearing resistance and sliding and eccentricity.

For scour protection, the spread footings on properly prepared soil subgrade shall be protected from scour with riprap on the riverbank slope and placed below the depth of scour.

4.2.2.3 Bearing Resistance and Eccentricity

Application of permanent and transient load combinations and applicable load factors are specified in LRFD Article 11.5.6. Based on LRFD Figure 11.6.3.2-2, the stress distribution at the abutments may be assumed to be a triangular or trapezoidal distribution over the effective base.

For abutment footings founded on prepared soil subgrades, we recommend the following factored bearing resistances.

Limit State	Bearing Resistance Factor Φ _b	Footing Width (feet)	Factored Bearing Resistance (ksf)			
		5	6.0			
Service	1.0	6	6.0			
		7	6.0			
		5	6.3			
Strength	0.45	6	7.0			
		7	7.7			

LRFD Figures C11.5.6-2 and C11.5.6-4 illustrate the typical load factors to produce the strength and extreme factored conditions for evaluating eccentricity. Based on LRFD Article 11.6.3.3, the location of the resultant force for eccentricity evaluation shall fall within the middle two-thirds (2/3) of the foundation base for foundations bearing on soil.

In no instance shall the factored bearing stress exceed the factored compressive resistance of the footing concrete, which may be taken as 0.3f'c. No footing shall be less than 2 feet wide regardless of the applied bearing pressure or bearing material.

4.2.2.4 Sliding Resistance

The following table shows the resistance factors, ϕ_T , for sliding analyses of cast-in-place spread footings bearing on 12 inches of compacted NHDOT Section 703 #467 Stone.

Limit State	Sliding Resistance Factor ϕ_{τ}	Reference			
Strength	0.8	LRFD Article C10.5.5.2.2			
Service	1.0	LRFD Article 10.5.5.1			
Extreme	1.0	LRFD Article 10.5.5.1			

Passive earth pressures due to the presence of soils in front of the abutments, wingwalls, and pier shall be neglected in the sliding analysis.

4.2.2.5 Subgrade Preparation and Construction Considerations

The top of the glacial till was encountered at about elevation -3 feet at B-101, approximately at the proposed footing elevation. In the event glacial till is not present at abutment footing subgrade, the soils should be over-excavated until glacial till is encountered and backfilled with compacted crushed stone or lean concrete. Excavation to the proposed bearing surface will extend about 8 feet below the OHW level. Excavation will require an internally braced SOE, likely consisting of driven sheet piles. The groundwater should be lowered to a level at least 1 foot below proposed foundation subgrade elevation. Excavation to final grade should be accomplished with the use of a smooth edge excavator bucket. The abutment footing should be underlain by at least 12 inches of compacted MaineDOT ³/₄-inch Crushed Stone.

4.2.3 Micropiles

Micropiles will consist of a cased section from the bottom of pile cap down to the top of competent bedrock with an uncased section below competent bedrock. Micropiles will be reinforced with a single, continuously threaded central bar running the full length of the micropile and filled with 5,000 psi Portland cement grout. In accordance with LRFD Article 10.9.1.2, center-to-center micropile spacing should not be less than 30 inches or 3 pile diameters, whichever is greater.

4.2.3.1 Axial Resistance

Rock-socketed micropiles will generally develop axial resistance through side friction in the rock socket. For design, per LRFD Table C10.9.3.5.2-1, we recommend a presumptive nominal grout-to-ground bond resistance of 30 ksf for the Granofels bedrock. Per LRFD Table 10.5.5.2.5-1, at the strength limit state, axially loaded micropiles shall be designed using a geotechnical resistance factor ϕ_{stat} of 0.70 provided tension load tests are performed.

Micropile axial resistance is dependent on rock-socket diameter and length. We recommend a minimum 10-foot rock socket considering fair to good rock quality.

A summary of estimated factored strength-limit axial geotechnical resistances for 7.5 and 9.5-inch diameter micropiles with various rock-socket lengths is provided in the following table. Additional pile diameters can be evaluated depending on foundation loading.

Embedment in Competent	Strength Limit Factored Axial Resistance (kips) ¹				
Bedrock (ft)	7.5-inch Uncased Diameter ²	9.5-inch Uncased Diameter ³			
10	415	525			
15	620	790			
20	830	1,050			

Notes: 1. Resistance factor of 0.7 used for the strength limit state

2. 8.625-inch OD, 7.625-inch ID casing to top of rock, assumed 7.5-inch diameter rock-socket 3. 10.75-inch OD, 9.75-inch ID casing to top of rock, assumed 9.5-inch diameter rock-socket

Additional micropile rock-socket diameters and lengths may be considered depending on the actual factored design axial loads. S.W.COLE can provide additional input on micropile size once abutment loading has been developed for the proposed structure. Final axial design of micropiles shall be performed by the micropile specialty contractor during construction-phase, based on verification load test results and selected means and methods.

4.2.3.2 Downdrag

We understand the approach grades will remain within ½ foot of existing grades therefore, settlement will be negligible. Therefore, downdrag is not considered to be an issue.

4.2.3.3 Lateral Resistance

We anticipate micropiles will be subjected to lateral loading; the micropiles should be evaluated for resistance against combined axial compression and flexure in accordance with LRFD Table Article 10.7.3.9. Lateral resistance can also be derived from the use of battered piles.

4.2.4 H-Piles

Based on the subsurface findings and relatively shallow depth to bedrock, we anticipate piles will need to be drilled and socketed into bedrock to prevent translation of the pile tip. In accordance with LRFD Article 10.7.1.2, center-to-center pile spacing should not be less than 30 inches or 2.5 pile diameters, whichever is greater.

4.2.4.1 Strength Limit State Design

Design of pile foundations bearing within bedrock at the strength limit state shall consider.

- Compressive axial geotechnical resistance of individual piles.
- Structural resistance of individual piles in axial compression.
- Structural resistance of individual piles in combined axial loading and flexure.

Pile groups should be designed to resist all lateral earth loads, vehicular loads, dead and live loads, and lateral forces transferred through the abutments. The pile group resistance after scour due to the design flood shall provide adequate foundation resistance using the resistance factors given in this section.

We anticipate H-piles will be subjected to lateral loading; therefore, the piles should be evaluated for resistance against combined axial compression and flexure in accordance with LRFD Articles 6.9.2.2 and 6.15.2.

Per LRFD Article 6.5.4.2, at the strength limit state, the axial resistance factor $\phi_c = 0.70$ and the flexural resistance factor $\phi_f = 1.0$ shall be applied to the combined axial and flexural resistance of the pile in the interaction equation (LRFD Eq. 6.9.2.2-1 or -2).

<u>Structural Resistance</u>. The nominal axial compressive structural resistance (P_n) for piles loaded in compression shall be as specified in LRFD Article 6.9.4.1. The nominal axial structural compressive resistance (P_n) subject to the combined axial compression and flexure shall be evaluated based on unbraced lengths (I) and effective length factors (K) as determined from LPile once structural loads are available. The nominal axial structural resistance should be evaluated based on combined axial compression and flexure.

Preliminary estimates of the structural axial resistance for selected H-pile sections were calculated using a resistance factor, $\phi_c = 0.60$, for good driving conditions. The unbraced pile lengths (I) and effective length factors (K) in these evaluations have been assumed. It is the responsibility of the structural engineer to calculate the nominal axial structural compressive resistance (P_n) based on unbraced lengths (I) and effective length factors (K) determined from LPile as needed.

<u>Geotechnical Resistance</u>. The nominal axial geotechnical resistance in the strength limit state were calculated using the guidance in LRFD Article 10.7.3.2.3 which states the nominal bearing resistance of piles driven to point bearing on hard rock shall not exceed the structural pile resistances obtained from LRFD Article 6.9.4.1 with a resistance factor $\phi_c = 0.60$ for good driving conditions.

<u>Drivability Analyses</u>. We anticipate piles, if selected, for foundation support will be placed in predrilled holes and grouted into bedrock therefore drivability analyses were not evaluated.

A summary of the calculated factored axial compressive structural, geotechnical, and drivability resistances of selected H-piles for the strength limit states are provided in the following table.

Factored Axial Pile Resistances at Strength Limit States								
	Factored Axial Pile Resistance (kips)							
Pile Section	Structural Resistance $\phi_c = 0.5$	Geotechnical Resistance ∳ = 0.5	Drivability Resistance	Controlling Axial Pile Resistance				
HP 12x74	545	545	N/A	545				
HP 14x89	650	650	N/A	650				

Notes: 1. End bearing on bedrock

2. The drivability resistance in not applicable (N/A) since piles will be pre-drilled and socketed into bedrock.

Additional pile sections may be considered depending on the factored design axial loads. S.W.COLE can provide additional input on pile size once pile loading has been developed for the proposed structure.

4.2.4.2 Service and Extreme Limit State Design

The design of H-piles at the service limit state shall consider tolerable transverse and longitudinal movement of piles and pile group movement considering changes in soil conditions due to scour based on the design flood (Q₁₀₀). For the service limit state, resistance factors of φ = 1.0 should be used in accordance with LRFD Article 10.5.5.1. The exception is the overall global stability of the foundation which should be investigated at the Service I load combination and a resistance factor, φ , of 0.65.

Extreme limit state design shall include pile axial compressive resistance, overall global stability of the pile group, pile failure by uplift in tension, and structural failure. The extreme event load combinations are those related to seismic forces, ice loads, debris loads, and hydraulic events. Extreme limit state design shall also check that the nominal pile foundation resistance remaining after scour due to the check flood (Q_{500}) can support the extreme limit state loads. Resistance factors for extreme limit states, per LRFD Article 10.5.5.3, shall be taken as $\varphi = 1.0$ except for uplift of piles, for which the resistance factor, φ_{up} , shall be 0.80 or less per LRFD Article 10.5.5.3.2.

The nominal axial geotechnical pile resistance at the service and extreme limit state was calculated using the guidance in LRFD Article 10.7.3.2.3. A summary of the calculated factored axial structural, geotechnical, and drivability resistances of selected H-piles for the extreme and service limit states are provided in the following table.

Factored Axial Pile Resistances at Service and Extreme Limit States								
	Factored Axial Pile Resistance (kips)							
Pile Section	Structural Resistance $\phi_c = 1.0$	Geotechnical Resistance ∳ = 1.0	Drivability Resistance	Controlling Axial Pile Resistance				
HP 12x74	1,090	1,090	N/A	1,090				
HP 14x89	1,305	1,305	N/A	1,305				

Notes: 1. End bearing on bedrock

2. The drivability resistance in not applicable (N/A) since piles will be pre-drilled and socketed into bedrock.

4.2.4.3 Downdrag

We understand the approach grades will remain within ½ foot of existing grades therefore, settlement will be negligible. Therefore, downdrag is not considered to be an issue.

4.2.4.4 Lateral Pile Resistance

In accordance with LRFD Article 6.15.1, the structural analysis of pile groups subjected to lateral loads shall include consideration of soil-structure interaction effects as specified in LRFD Article 10.7.3.9. Assumptions regarding a fixed or pinned condition at the pile tip should be also confirmed with soil-structure interaction analyses.

S.W.COLE is available to perform lateral pile analyses using LPile® 2016 (LPile) software with axial and lateral loads to be supplied by the structural engineer.

4.3 Abutment Design Considerations

Abutments should be designed for all relevant strength, service, and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. Stub abutments shall be designed to resist all lateral earth loads, vehicular loads, dead and live loads, and lateral forces transferred through the superstructure. Strength limit state design shall also consider changes in foundation conditions and foundation resistance after scour due to the design (Q_{100}) flood.

A resistance factor (ϕ) of 1.0 shall be used to assess abutment design at the service limit state, including: settlement, excessive horizontal movement, and movement resulting after scour due to the design (Q₁₀₀) flood. The overall stability of the foundation should be investigated at the Service I Load Combination and a resistance factor, ϕ , of 0.65.

Extreme limit state design of integral abutment supported on H-piles or micropiles shall include pile structural resistance, pile geotechnical resistance, pile resistance in combined axial and flexure, and overall stability. Resistance factors for extreme limit state shall be

taken as 1.0. Extreme limit state design shall also check that the nominal foundation resistance remaining after scour due to the check (Q_{500}) flood can support the extreme limit state loads with a resistance factor of 1.0.

The designer may assume the following abutment backfill material soil properties in accordance with MaineDOT Bridge Design Guide (BDG) Section 3.6.1.

- Angle of internal friction (ϕ) of 32 degrees,
- Total unit weight (γ) of 125 pcf, and
- Soil-concrete interface friction angle (δ) of 20 degrees.

Abutments shall be designed to withstand a lateral earth load equal to the passive pressure state. AASHTO LRFD Article C3.11.5.4 suggests full passive pressure is mobilized when the ratio of lateral abutment movement to abutment height (y/H) is 0.05H in loose cohesionless soils and less than 0.05H in dense cohesionless soils. Additionally, Federal Highway Authority (FHWA) NHI-06-089 Figure 10-4, indicates mobilization of full passive pressure in dense cohesionless soils occurs at a y/H ratio of 0.02H.

Considering the above information, we recommend the structural designer estimate the abutment rotation. S.W.COLE can then assist in selection of a passive pressure coefficient.

The abutment design shall include a drainage system behind the abutment to mitigate excessive hydrostatic pressures. Drainage behind the structure shall be in accordance with MaineDOT BDG Section 5.4.2.13.

Backfill within 10 feet of the abutments and side slope fill shall conform to MaineDOT Specification 703.19 "Granular Borrow for Underwater Backfill."

Slopes in front of the pile supported abutments should be protected with riprap and erosion control geotextile. The riprap covered slopes should not exceed 1.75:1(H:V) and be "toe-in" at least 2 feet.

4.4 Seismic Considerations

Seismic site class was evaluated in accordance with LRFD Article 3.10.3.1 Method B (average N-value method). AASHTO allows for an N-value of 100 to be used for bedrock in the upper 100 feet of the soil profile. Based on the subsurface information and an N-value of 100 for the bedrock, the average N-value was between 15 and 50 bpf corresponding to an AASHTO Site Class D as defined in LRFD Table 3.10.3.1-1.

The United States Geological Survey (USGS) Seismic Design Parameters program (Version 2.1) was used to obtain the seismic design parameters for the site. Based on the assigned site class (AASHTO Site Class D) and site coordinates, the software provides the recommended AASHTO Response Spectrum for a 7 percent probability of exceedance in 75 years (1,000-year return period).

RECOMMENDED SEISMIC DESIGN PARAMETERS ¹							
Site Class	D						
PGA	0.069 g						
S₅	0.146 g						
S ₁	0.042 g						
F _{pga}	1.6						
Fa	1.6						
Fv	2.4						
As	0.11 g						
S _{DS}	0.23 g						
S _{D1}	0.10 g						
Seismic Zone (based on S _{D1})	Zone 1						

NOTE: 1. Site Coordinates: N44.003652, W69.588012

2. Seismic Zone from AASHTO LRFD Table 3.10.6-1

Per AASHTO Article 4.7.4, single-span bridges are not required to be analyzed for seismic loads, however the requirements of AASHTO Articles 4.7.4.4 and 3.10.9 shall apply.

4.5 Frost Considerations

Pile supported integral abutments should be embedded a minimum of 4.0 feet for frost protection. Foundations bearing on soil should be designed with an appropriate embedment for frost protection. The design freezing index for the Newcastle, Maine area is approximately 1,300 freezing degree-days. Based on the MaineDOT BDG, Section 5.2.1 and Table 5-1 and subsurface soils encountered, the maximum seasonal frost penetration is estimated to be on the order of about 4.5 feet; consequently, we recommend foundations should have at least 4.5 feet of soil cover to provide frost protection.

Riprap is not to be considered as contributing to the overall thickness of soils required for frost protection.

4.6 Construction Considerations

Construction of the abutments will require installation of drilled micropiles or H-piles placed in drilled rock sockets. The new abutments will be constructed behind the existing crossing. We understand current planning is considering full road closure. Construction shall avoid

disturbance of the sensitive soils outside the excavation limits and avoiding placement of fills in the river.

The contractor should monitor the stability of slopes, excavation, soils at the roadway grade and the temporary earth retaining systems during construction. The contractor should control groundwater, surface water infiltration and soil erosion. Water should be controlled by pumping from sumps.

4.7 Design Review and Construction Testing

S.W.COLE should be retained to review the construction documents prior to bidding to determine that our earthwork and foundation recommendations have been properly interpreted and implemented.

A construction material testing and quality assurance program should be implemented during construction to observe compliance with the design concepts, plans, and specifications. S.W.COLE is available to observe earthwork activities, installation of piles as well as to provide testing for soils, concrete, and asphalt construction materials.

5.0 CLOSURE

It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the construction phase of the project.

Sincerely,

S. W. Cole Engineering, Inc.

Michael A. St. Pierre, P.E. Senior Geotechnical Engineer

MAS:tsd-rec

APPENDIX A

Limitations

This report has been prepared for the exclusive use of VHB, Inc. for specific application to the proposed Mill Bridge Replacement carrying Lynch Road over Dyer Creek in Newcastle, Maine. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.

Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

S.W.COLE's scope of services has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

APPENDIX B

Figures

LEGEND:

APPROXIMATE BORING LOCATION

NOTES:

- 1. EXPLORATION LOCATION PLAN WAS PREPARED FROM SCALE PLANS OF THE SITE PROVIDED BY VHB, INC., RECEIVED VIA E-MAIL 8/9/2023.
- 2. THE BORINGS WERE LOCATED IN THE FIELD BY TAPED MEASUREMENTS FROM EXISTING SITE FEATURES.
- 3. THIS PLAN SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT.
- 4. THE PURPOSE OF THIS PLAN IS ONLY TO DEPICT THE LOCATION OF THE EXPLORATIONS IN RELATION TO THE EXISTING CONDITIONS AND PROPOSED CONSTRUCTION AND IS NOT TO BE USED FOR CONSTRUCTION.

APPENDIX C

Exploration Logs and Key

KEY TO NOTES & SYMBOLS Test Boring and Test Pit Explorations

Stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

- w water content, percent (dry weight basis)
- q_u unconfined compressive strength, kips/sq. ft. laboratory test
- S_v field vane shear strength, kips/sq. ft.
- L_v lab vane shear strength, kips/sq. ft.
- q_p unconfined compressive strength, kips/sq. ft. pocket penetrometer test
- O organic content, percent (dry weight basis)
- W_L liquid limit Atterberg test
- W_P plastic limit Atterberg test
- WOH advance by weight of hammer
- WOM advance by weight of man
- WOR advance by weight of rods
- HYD advance by force of hydraulic piston on drill
- RQD Rock Quality Designator an index of the quality of a rock mass.
- γ_T total soil weight
- $\gamma_{\rm B}$ buoyant soil weight

Description of Proportions:

Description of Stratified Soils

		Parting:	0 to 1/16" thickness
Trace:	0 to 5%	Seam:	1/16" to 1/2" thickness
Some:	5 to 12%	Layer:	1⁄2" to 12" thickness
"Y"	12 to 35%	Varved:	Alternating seams or layers
And	35+%	Occasional:	one or less per foot of thickness
With	Undifferentiated	Frequent:	more than one per foot of thickness

REFUSAL: <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: <u>Test Pit Explorations</u> - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

E		CLI	BORING LOG BC CLIENT: VHB, Inc. PF PROJECT: Mill Bridge Replacement D/										BORING SHEET: PROJEC DATE ST	NO.: B-101 1 of 2 T NO. 23-1036 ART: 8/1/2023 NSH: 8/1/2023	
Drilli LOCA DRILL RIG T HAMM HAMM WATE GENE	ING CO.: TION: <u>S</u> ING CO.: YPE: <u>T</u> IER TYPI IER COR R LEVEL RAL NOT	See Ex : S. V : S. V : AU : AU	tion ploration I V. Cole Ex ounted Mo utomatic ION FACT		ation Plan prations, I e Drill B-4 R: <u>1.51</u> Z 7.8 ft a	n [_LC [18] http://www.second	ELEVATIC DRILLER: AUGER ID HAMMER HAMMER g	DN (FT):	8' +/- I/A : <u>14</u> 30		TOTAL DEPTH (FT): 28.8 DRILLING METHOD: Cased SAMPLER: Standard Split-Sp CASING ID/OD: 4 in / 4 1/2 in	LO Boring poon CC	DGGED BY:	Michael St. Pierre	
KEY T AND S	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ¥ At ¥ At	<u>er Level</u> t time of Dri t Completio fter Drilling	illing n of	Drilling	D = Split S U = Thin V R = Rock 0 V = Field \	poon Samp Valled Tube Core Sampl /ane Shear	e Pen. = Sample Rec. = e bpf = mpf =	= Pene = Reco Blows Minut	etration Length overy Length per Foot e per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	$S_v = Field$ $q_U = Unc$ Ø = Frictition N/A = Nc	d Vane Shear confined Comp ion Angle (Es ot Applicable	Strength, kips/sq.ft. oressive Strength, kips/sq timated)	q.ft.
					SAMPL	E INFO	RMATIO	N	b D						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H₂0 Depth	Remarks	
			1D	X	0.9-2.9	24/15	18-22- 17-29			0.3 <u>3" o</u> Very 1.4 <u>Cen</u> <u>Cen</u> Mec SAN (Fill)	Pavement dense, gray, damp, gravelly S e silt, with cement (Fill - Possik tent Treated Base/Subbase Gr ium dense, brown, damp, grav ID, some silt, with asphalt fragr	AND, ble avel) elly ments	/ /		
	- 5		2D	X	5-7	24/22	4-3-3-3	q _P =5.0-5.5 ksf ID 15029A w =20.1 % W _L =24 W _P =18		5.0 ⁻ — — — Very sand	stiff, gray, moist, silty CLAY, s d, trace organics (reeds)	some	 		
5	- - - - - - - - -		3D	X	10-12	24/16	5-9-15- 17			10.7 — Mec trac	ium stiff to soft, gray, wet, silly e sand, with organics (wood, we	CLAY, ood fibe	 er)		
0	- 15		4D	$\left[\right]$	15-17	24/0	5-1-1-1								
-5 -	- - - - - - - - - - - - - - 20		5D 1R	M	17-17.2 17.9- 22.9	2/2 60/29	50/2"			17.0 — <u>Den</u> With	se, brown, wet, silty gravelly SA cobbles (Glacial Till)	AND,		1R core through cobbles	
-10 -	- - - - ation lines	represe	2R nt approxim	nate	23.8- 28.8	60/60	85			23.8 Gra fres	/, fine-grained, GRANOFELS, I n, joints are close to moderately (Continued Next Page)	hard, y close,			
bounda gradual at times	ry between . Water lev and under	i soil typ el readi r conditi	es, transitions have booms stated.	ons i een	may be made						(Commuea Next Fage)				
Fluctuat other fa	tions of gro ctors than	undwat those p	er may occu resent at the	ur dı e tin	ue to ne							Γ	BORING	NO.: B-101	
medsul	ements we	-e made	<i>.</i>			1									

F		BORING LOG									NO.: _	B-101
	=	CLI	ENT: _V	'HB, Inc.					1	PROJEC	T NO.	23-1036
		PRO	OJECT:	Mill Brid	ge Repla	cement			I	DATE ST	ART:	8/1/2023
S.W.C	COLE	LOC	CATION:	Lynch F	Road ove	er Dyer C	reek, Newca	stle,	Maine I	DATE FIN	NISH:	8/1/2023
				SAMPI	E INFO	RMATIO	N	g				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	ed Depth ⊢ (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification	H₂0 Depth		Remarks
									horizontal to moderately dipping, and tight (Bucksport Formation)			
-13									Bottom of Exploration at 28.8 feet			

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.: B-101

							E	BORIN	G	LOG		E		0.: _	B-102
/=				/								- \$			1 of 1
					3, INC. Aill Bride	a Ronia	comont					- ;		NU PT·	23-1030
CW		LO	CATION	: 1	Lynch R	load ove	er Dver (Creek. Newc	astle	Maine		- '	DATE FINIS	SH:	8/1/2023
5.w.	COLE		-		-							_			
LOCA DRILL	TION: LING CO.	See Ex	ploration l N. Cole E:	Loc: xplc	ation Plar prations, L	LC	ELEVATIO DRILLER:	ON (FT): Matt Bussey	.7' +/- /		TOTAL DEPTH (FT): 5.4 DRILLING METHOD: Solid Stem	LOG Auge	GED BY:	Michae	el St. Pierre
RIGT		ack M	ounted Me	obile	e Drill B-4	18 1			4 1/2 ii	<u> </u>	SAMPLER: <u>Standard Split-Spoor</u>				
	IER I IP	E: <u>AL</u> RFCT		TOF	२ ∙ 1.51			DROP (inch)): <u>14</u> 30	0	Casing ID/OD: <u>N/A /N/A</u>	COF	E BARREL:		
WATE	R LEVEL	DEPT	THS (ft):	N	lo free wa	ater obser	ved	2.101 ().							
GENE	RAL NO	ES:													
KEY T AND S	TO NOTES SYMBOLS:	<u>Wate</u> ⊻ A ¥ A ¥ A	<u>er Level</u> t time of Dri t Completio fter Drilling	illing n of	Drilling	D = Split S $U = Thin V$ $R = Rock$ $V = Field V$	Spoon Samp Valled Tube Core Samp /ane Shear	ble Pen. e Sample Rec. le bpf = mpf =	= Pene = Reco Blows = Minut	etration Length overy Length per Foot e per Foot	$\begin{array}{ll} \text{WOR} = \text{Weight of Rods} & \text{S}_{\text{v}} = \\ \text{WOH} = \text{Weight of Hammer} & \text{q}_{\text{U}} = \\ \text{RQD} = \text{Rock Quality Designation} & \textit{\emptyset} = \\ \text{PID} = \text{Photoionization Detector} & \text{N/A} \end{array}$	Field V Uncor Frictio	Vane Shear St nfined Compres n Angle (Estim Applicable	rength, ssive S ated)	kips/sq.ft. trength, kips/sq.ft.
					SAMPL	E INFO	RMATIC	N	5						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H ₂ 0 Depth	F	Remarks
									\times	0.3 3 1/2	2" of Pavement		_/		
10 -	- - - -		1D	\mathbb{N}	1.8-3.8	24/18	16-15- 15-15	ID 15031A w =5.9 %		Den silt, 1.8 [–] <u>⊤ Trea</u> Den with	se, gray, damp, gravelly SAND, sc with cement (Fill - Possible Cemer ated Base/Subbase Gravel) se, brown, damp, silty gravelly SA asphalt fragments (Fill)	me it ND,	_ /		
10 -	- 5		2D	×	5-5.3	3/3	50/3"			Med	lium dense, gray, moist, SAND and	1			
											Auger Refusal at 5.4 feet Probable Boulder		_]		
2															
Stratific	ation lines	represe	ent approxim	nate		1									
bounda gradua at times Fluctua other fa	ary betweer I. Water lev s and unde ations of gro actors than	soil typ el readi conditi undwat those p	bes, transitions have b ions stated. er may occurresent at the	ons r een ur du e tim	may be made ue to ne							L-		<u> </u>	B 400
measu	rements we	re mad	e.											J.:	B-102

E							E	BOR	ING	GI	LOG			BORING SHEET:	6 NO.:	B-102A 1 of 1
		CLI	ENT:	VH	B, Inc.									PROJE	CT NO.	23-1036
		PR	OJECT	N	/ill Brid	ge Repla	cement							DATE S	TART:	8/1/2023
S.W.	COLE		CATION	l: _	Lynch F	Road ove	er Dyer C	Creek, N	lewca	stle,	Maine			DATE F	INISH:	8/1/2023
Drilli LOCA	ng Info TION: _	See Ex	tion ploration	Loc	ation Pla	<u>n</u>]		ON (FT):	13.7	7' +/-		TOTAL DEPTH (FT): 6.2	LC	DGGED BY	': <u>Mich</u>	ael St. Pierre
	ING CO YPF· ⊺	.: <u>S. V</u> rack M	V. Cole E	xplc 10bil	e Drill B-	48 I	DRILLER: AUGER IF	Matt B	USSEY	1/2 iı		SAMPLER: Standard Split-	Stem Au	ger		
HAMN		E: AL	itomatic			<u> </u>	HAMMER	WEIGHT	(lbs):	14	0	CASING ID/OD: N/A /N/A	<u>C(</u>		EL:	
HAMM	IER COP	RRECT	ION FAC	TOF	R: <u>1.51</u>		HAMMER	DROP (i	nch):	30						
		L DEP1	THS (ft):	<u> </u>	lo free w	ater obser	ved									
KEY T AND S	O NOTES	<u>Wate</u> : ⊻ A ¥ A	er Level t time of D t Completio	rilling on of	g Drilling	D = Split S U = Thin V R = Rock	Spoon Samp Valled Tube Core Samp	ole Sample le	Pen. = Rec. = bpf = I	= Pene = Reco Blows	etration Length overy Length per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation	$S_v = Fiel$ $q_U = UnoØ = Fric$	ld Vane Shea confined Cor tion Angle (E	ar Strengt npressive stimated)	n, kips/sq.ft. Strength, kips/sq.ft.
<u> </u>		¥ A			<u></u>				mpi –	I		FID - FIIOIOIOIIZAIIOII Delecioi	N/A = N			
					SAMPI	LE INFO	RMATIC	DN		- G		Samplo				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Test [′ Lab Data	Graphic		Description & Classification		H ₂ 0 Depth		Remarks
	-										See subs	boring B-102 for summary of surface strata from 0 to 5.4 ft.				
	-															
10 -																
	- 5															
	-										^{5.4} Prob	able Fill				
												Auger Refusal at 6.2 fee Probable Boulder	et			
Ì																
2																
Stratific bounda gradual at times	ation lines ry betwee . Water le and unde	represe n soil typ vel readi er conditi	nt approxi bes, transiti ngs have l ons stated	mate ions i been	may be made											
Fluctua other fa measur	tions of gr ctors than ements w	oundwat those p ere made	er may oco resent at tl e.	cur d ne tin	ue to ne									BORING	6 NO.:	B-102A

						В	ORIN	G	LOG				IO.: _	B-102B
		CLI	ENT: V	HB, Inc.								PROJECT	NO.	23-1036
		PRO	DJECT:	Mill Bri	dge Repla	cement						DATE STA	RT:	8/1/2023
S.W.O	COLE	LOC	CATION:	Lynch	Road ove	er Dyer C	reek, Newc	astle	Maine			DATE FINI	SH:	8/1/2023
Drilli	ng Info	ormat	ion				N (FT) 40							
		See Exp · · · · · ·	Cole Ex	ocation P	an I		Matt Busse	5.8' +/-		DRILLING METHOD: Solid	L(JGGED BY:	Micha	ael St. Pierre
	YPE: T	. <u> </u>	ounted Mo	bile Drill F	<u>, LLC</u> 1 -48	AUGER ID	/OD: N/A /	y 4 1/2 i		SAMPLER: Standard Split-	Spoon	iyei		
HAMM	IER TYP	E: Au	tomatic			HAMMER	WEIGHT (Ibs): _14	0	CASING ID/OD: N/A /N/A	C	ORE BARREL	:	
HAMM	IER COR	RECTI	ON FACT	OR: 1.5	1 1	HAMMER	DROP (inch):	30						
WATE	R LEVEL	. DEPT	HS (ft):	No free	water obser	ved								
GENE KEY T AND S	O NOTES	Wate ⊻ At ▼ At	r Level time of Drill	ing of Drilling	D = Split S U = Thin V B = Bock	poon Samp Valled Tube	le Pen. Sample Rec.	= Pen = Rec	etration Length overy Length	WOR = Weight of Rods WOH = Weight of Hammer ROD = Rock Quality Designation	S _v = Fie q _u = Uni	ld Vane Shear S confined Compre	trength essive	n, kips/sq.ft. Strength, kips/sq.ft.
		¥ At ¥ Af	ter Drilling	or Drining	V = Field	/ane Shear	mpf	= Minut	e per Foot	PID = Photoionization Detector	N/A = N	lot Applicable	nated)	
				SAM	PLE INFO	RMATIO	N	bo						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	a Depti ⊢ (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L		Sample Description & Classification		H₂0 Depth		Remarks
	-								See sum ft	borings B-102 and B-102A fo mary of subsurface strata fro	n 0 to 6	.2		
	-													
	+													
10 -	4													
	- 5													
	-							\propto	6.2 ⁻ - Prot	 Dable Fill				
	-								× ····					
	-													
5 -	+													
	-								×	Auger Refusal at 9.9 fee Probable Boulder	et			
Stratifica bounda gradual at times	ation lines ry betweer . Water lev and unde	represer soil typ el readir condition	nt approxima es, transitior ngs have be	ate ns may be en made										
Fluctuat other fa	tions of gro ctors than ements we	those pr	er may occu esent at the	r due to time								BORING N	0.:	B-102B
measul	ondrus We	ne maut												

							В	ORIN	G	LOG		BORING	NO.: _	B-103
'=		CLI	ENT: \	/HF	3 Inc							PROJEC	T NO.	23-1036
	フ	PR	OJECT:	N	lill Bridg	je Repla	cement					DATE ST	ART:	7/31/2023
S.W.	COLE	LO	CATION	: _	_ynch R	load ove	er Dyer C	reek, Newca	stle,	Maine		DATE FI	NISH:	7/31/2023
	ing Info TION: _S	rmat See Ex	t ion ploration l	Loc	ation Plar	n i	ELEVATIC	DN (FT): 14'	+/-		TOTAL DEPTH (FT):15.6 L(OGGED BY	. <u>Micha</u>	el St. Pierre
DRILI	LING CO.:	S. V	V. Cole Ex	xplo	rations, L	LC	ORILLER:	Matt Bussey			DRILLING METHOD: Cased Boring			
RIGT	YPE: Tr	ack Mo	ounted Mo	obile	e Drill B-4	<u>18 /</u>		/OD: <u>N/A / N</u> WEIGHT (lbs):	I/A 1/1	0	SAMPLER: Standard Split-Spoon		=1 ·	
HAM	MER COR	RECTI	ION FACT	OF	R: 1.51	'	AMMER	DROP (inch):	30	0			<u> </u>	
WATE	ER LEVEL	DEPT	THS (ft):	_₽	2 10.3 ft	during dr	illing							
GENE	ERAL NOT	ES:					noon Comm	la Dan a	Dam	stration Longth	WOD - Weight of Dada	ld) (ana Chao	r Otropoth	king / og ft
AND	SYMBOLS:	<u>vvale</u> ∑ At ∑ At ∑ At	t time of Dri t Completio fter Drilling	illing n of	Drilling	U = Thin V $R = Rock$ $V = Field$	Valled Tube Core Sample /ane Shear	Sample Rec. = e bpf = mpf =	= Reco Blows Minut	per Foot per Foot	WOR Weight of Rammer q_{ij} = Un RQD = Rock Quality Designation \emptyset = Fric PID = Photoionization Detector N/A = N	confined Com tion Angle (Es lot Applicable	pressive S stimated)	, kips/sq.it. Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	p					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification	H ₂ 0 Depth		Remarks
	-		1D	X	1-3	24/14	18-23- 20-21			0.3 <u>3" o</u> Den 1.4 ₇ silt, <u>Trea</u> Med SAN	Pavement se, gray, damp, gravelly SAND, some with cement (Fill - Possible Cement ted Base/Subbase Gravel) ium dense, brown, damp, gravelly ID, some silt (Fill)			
10 -	- 5 		2D	X	5-7	24/16	5-5-4-5	ID 15032A w =5.7 %		Mec SAN	ium dense, brown, moist, silty gravell D, with asphalt fragments (Fill)	y		
5 -	- 10 - 10		3D	X	10-12	24/11	5-4-8- 11			Mec 10.6 SAN Mec sand	ium dense, brown, wet, gravelly silty D (Fill) ium stiff, gray, wet, silty CLAY, trace I, with organics (wood, wood fiber)	/ /		
0 -	 15		4D	X	15-15.3	3/3	50/3"			14.5 — <u>—</u> Den (Gla	se, brown, wet, silty gravelly SAND cial Till)			
1212											Auger Refusal at 15.6 feet			
Stratific bounda	cation lines r ary between al. Water lev	eprese soil typ	nt approxim les, transitio	nate ons r	nay be made									
at time	s and under ations of gro	conditio	ons stated. er may occi	ur di	ue to									
other fa	actors than t rements we	hose pr re made	resent at the	e tirr	ne							BORING	NO.:	B-103

							B	ORI	NG	LC	G				BORING	6 NO.: _	B-104
' =	-			/40 1~	<u> </u>						-				SHEET:	от NO	1 of 1
	7			Mill F	ridae R	enlac	ement								DATE S	TART	7/31/2023
SW	OLE	LO	CATION	:_Lyne	ch Road	d over	Dyer C	reek, Ne	wcas	tle, Mai	ne				DATE F	INISH:	7/31/2023
Drilli		ormat	ion ploration l	Location	Plan	EI		N (FT): _	14' +/	/-		TOTAL DEPTH (F	[]: <u>3.6</u>	LO	GGED BY	': <u>Micha</u>	ael St. Pierre
		: <u>S. V</u>	V. Cole Ex	xploratic	INS, LLC		RILLER:	Matt Bu	ssey	1/2 in			D: Solid	Stem Aug	jer		
HAMM		E: Au	tomatic		II D-40	— ^	AMMER	WEIGHT ((lbs):	140		CASING ID/OD:	V/A / N/A	CC	RE BARF	REL:	
HAMN	IER COR R LEVEL	RECTI L DEPT	ON FACT HS (ft):	TOR: _1 _No fre	.51 e water o	H	AMMER I ed	DROP (in	ch): _	30							
KEY T AND S	O NOTES	<u>Wate</u> ∑ At ∑ At ∑ At	e <u>r Level</u> time of Dri Completio ter Drilling	illing n of Drillir	D = 9 U = 7 ng R = 1 V = 1	Split Sp Thin Wa Rock Co Field Va	oon Sampl alled Tube ore Sample ane Shear	le l Sample l e l	Pen. = F Rec. = F bpf = Bl mpf = N	Penetratior Recovery L lows per Fo linute per f	Length Length Dot Foot	WOR = Weight of Re WOH = Weight of Ha RQD = Rock Quality PID = Photoionizatio	ods ammer Designation n Detector	S _v = Field q _U = Unc Ø = Fricti N/A = Nc	I Vane Shea onfined Cor on Angle (E t Applicable	ar Strength npressive s stimated)	n, kips/sq.ft. Strength, kips/sq.ft.
				SAI	MPLE IN	NFOR	MATIO	N		0							
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	De ⊐d∆⊑ (f	pth R t) (en./ lec. in)	Blow Count or RQD	Field / I Test D	Lab ata	Graphic Lo		Sam Descrip Classifi	ple tion & cation		H ₂ 0 Depth	ı	Remarks
-	-		1D	1.4	-3.2 21	1/19	24-20- 27- 50/3"			0.3 ⁻	3 1/2 Den som <u>Cen</u> Den silt (2" of Pavement se, gray, damp, SA e silt, with cement ent Treated Base/ se, brown, damp, g Fill)	ND and G (Fill - Poss Subbase G ravelly SA	RAVEL, ible iravel) ND, som			
									K	<u> </u>		Auger Refusa	l at 3.6 fee	t			
Stratific bounda gradual at times Fluctual other fa	ation lines ry betweer . Water lev and unde tions of gro ctors than	represent n soil typ vel readin er condition bundwate those pr	nt approxim es, transitic ngs have b ons stated. er may occi esent at th	nate ons may b een made ur due to e time	e									r			
measur	ements we	ere made).												ROKING	9 NO.:	в-104

EVENCE EVENCE<	E			BORING LOG									BORING NO.: B-1 SHEET: 10	
EVENCE PROJECT: Mill fridinge Registancement Data Data Event Revealable, Maine Defining Information Oncentro: Line Revealable, Maine Defining De			CLIE	NT:_\	/HE	3, Inc.						PROJE		23-1036
DATE FURSE:			PRO	JECT:	_M	lill Brid	ge Repla	cement				DATE S	TART:	7/31/2023
Drilling Information DRILLIRG Correction Exploration: LLC BICADING: Society September Loging ELEVATION (FT): 14 ** TOTAL DEPTH (FT): 27.2 LOGGED BY: Michael Sc. Plane BILLIRG MICHAEL September LLC BILLIRG MICHAEL September LLC BILLIRG MICHAEL September LLC BILLIRG MICHAEL September LLC AUGMENT VERTICAL SEPTEMBER LINE SEP	S.W.C	COLE	LOC	ATION	: _L	_ynch F	koad ove	er Dyer C	reek, Newca	stle,		DATEF	INISH:	//31/2023
Clear Continued Note:	Drillin Locat Drillin Rig Ty Hamm Hamm Wate	ng Info FION: <u>S</u> NG CO.: (PE: <u>Tr</u> ER TYPE ER COR R LEVEL	See Expl S. W. ack Mou E: Auto RECTIC	oration L Cole E unted Mo omatic DN FACT IS (ft):	Loca xplo obile r OR _⊻	ation Pla rations, e Drill B c <u>1.51</u> 2 8.2 ft	n E LLC C 48 / H during drilli	ELEVATIC DRILLER: AUGER ID HAMMER HAMMER	DN (FT):14' Matt Bussey D/OD:N/A / N WEIGHT (Ibs): DROP (inch):	+/- //A 	TOTAL DEPTH (FT): 27.2 L0 DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon CASING ID/OD: 4 in / 4 1/2 in Context	DGGED BY	': <u>Micha</u> REL: <u>NG</u>	ael St. Pierre
Y Al Complexient of Dring Re-Road Cost Service	GENER KEY TO AND S	RAL NOT D NOTES YMBOLS:	ES: <u>Water</u> ⊈ At ti	Level ime of Dri	illing		D = Split S U = Thin W	poon Samp /alled Tube	ole Pen. = e Sample Rec. =	= Pene = Reco	tration Length WOR = Weight of Rods $S_v =$ Fie very Length WOH = Weight of Hammer $q_U =$ Un	d Vane She confined Cor	ar Strength npressive \$	n, kips/sq.ft. Strength, kips/sq.ft.
Env: Depth Cases (n) SAMPLE INFORMATION (n) Field / Lab Remarks Sample (n) Description & (n) Sample (n) Depth (n) Depth (n) D			T At C T Afte	Completion r Drilling	n of	Drilling	R = Rock (V = Field V	Core Sampl /ane Shear	le bpf = mpf =	Blows Minut	per Foot RQD = Rock Quality Designation Ø = Fric e per Foot PID = Photoionization Detector N/A = N	tion Angle (E ot Applicable	stimated)	
Elev: Depth Carry line is a proper is sumple is increased in the second in the se					:	SAMPI		RMATIC	N .	- B	Comula			
See boing B-104 for summary of strata 10 5 2D 5.7 24/16 30-16- 9.7 q=5.0.7.5 km² 36 Medium dense, brown, damp, gravelly 5 - 0 - 5.7 24/16 30-16- 9.7 q=5.0.7.5 km² 5.8 Very stiff, gray, moist, clayey sandy SiLT, trace gravel (Fill) 5 - 10 3D 10-12 24/12 19-11- 12-1 10-15/034A 10.5/034A 0 - 15 4D 10-12 24/14 0-12- 9.7 10-15/034A 10.5/034A 0 - 15 4D 115-17 24/14 0-12- 9.7 10-15/034A 10.5/034A 0 - 18 17.2 60/56 55 10-15/034A 10.5/034A 10.5/034A - - 22 27.2 60/56 55 10-15/034A 11.5 % 10.5/034A - - 27.2 60/56 55 10-15/034A 11.5 % 11.6 0-2/034B 11.6 0-2/034B 11.6 0-2/034B 10.5/034A	Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H ₂ 0 Depth	1	Remarks
10 -		-									See boring B-104 for summary of strata from 0 to 3.6 ft.			
0 - 15 4D - 15-17 24/14 9-12- 13-23 ID 15035A w = 11.5 % 14.0 Dense, brown, wet, silty gravely SAND - - 18 17.2 60/56 55 ID 15265A qu=13050 psi Unit Wt = 17.2 Gray, fine-grained, quartz-biotite GRANOFELS, hard, fresh, joints are very close to moderately close, horizontal to steep, and tight to open (Bucksport Formation) 5 - 2R 22.2 60/60 53 10 15265A gradual. Water level readings have been made at times and user order conductions stated. (Continued Next Page) (Continued Next Page)		- 5 - 5 		2D 3D	X	5-7	24/16	39-16- 9-7 19-11- 2-1	$q_p=5.0-7.5 \text{ ksf}$ ID 15034A w = 39.8 % $W_L = 32$ $W_p = 18$ O = 9.4 %		 3.6 Medium dense, brown, damp, gravelly SAND, some silt (Fill) 5.8 Very stiff, gray, moist, clayey sandy SILT, trace gravel (Fill) 5.8 Stiff, gray, wet, SILT and SAND, some cla some gravel (Fill) 5.9 Medium stiff, gray, wet, silty CLAY, trace sand, with organics (wood, wood fiber) 	 У,		
1 1	0 -	- 15 -		4D	X	15-17	24/14	9-12- 13-23	ID 15035A w =11.5 %		14.0 Dense, brown, wet, silty gravelly SAND (Glacial Till)			
Image: Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur use to other factors than those present at the time (Continued Next Page)	-5-	- - - 20		1R		17.2- 22.2	60/56	55	ID 15265A q _∪ =13050 psi Unit Wt = 162 pcf		17.2 Gray, fine-grained, quartz-biotite GRANOFELS, hard, fresh, joints are very close to moderately close, horizontal to steep, and tight to open (Bucksport Formation)			
Straincaron mes represent approximate (Continued Next Page) boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time	-10 -	-		2R		22.2- 27.2	60/60	53						
at times and under conditions stated. E Fluctuations of groundwater may occur due to other factors than those present at the time	boundar	y between	soil types	approxim s, transitio	iate ons n een	nay be made					(Continued Next Page)			
c) other factors than those present at the time	at times Fluctuat	and under ions of gro	condition	ns stated.	ur du	ue to								
measurements were made.	other fac measure	ctors than t ements we	hose pre re made.	sent at the	e tim	ie						BORING	B NO.:	B-104A

BORING LOG	BORING N SHEET:	NO.: <u>B-104A</u> 2 of 2	
CLIENT: VHB, Inc.			
PROJECT: Mill Bridge Replacement		ART: <u>7/31/2023</u> ISH: 7/31/2023	
Elev. (ft) Depth (ft) Casing Pen. (bpf) Sample No. Depth (ft) Pen./ (ft) Blow Rec. (in) Field / Lab RQD Field / Lab Test Data Sample Classification	H₂0 Depth	Remarks	
Bottom of Exploration at 27.2 feet			
Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated.			
Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.	BORING N	NO.: B-104A	

104A

Mill Bridge Replacement Lynch Road over Dyer Creek Newcastle, Maine

Boring No.	Run	Depth (ft)	Recovery (%)	RQD (%)	Rock Type	Box Row
B-104A	R1	17.2-22.2	93%	55%	GRANOFELS	1
B-104A	R2	22.2-27.2	100%	53%	GRANOFELS	2
B-101	R1	23.8-28.8	100%	85%	GRANOFELS	3/4

APPENDIX D

Laboratory Test Results

Report of Gradation

ASTM C-117 & C-136

Project Name	NEWCASTLE ME - MILL BRIDGE #0618 REPLACEMENT -	Project Number	23-1036
	EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES	Lab ID	15031A
Client	VANASSE HANGEN BRUSTLIN (VHB)	Date Received	8/7/2023
Exploration	B-102	Date Completed	8/14/2023
Material Source	1D, 1.8 FT	Tested By	TRAVIS SMITH

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	92	
12.5 mm	1/2"	86	
9.5 mm	3/8"	83	
6.3 mm	1/4"	76	
4.75 mm	No. 4	71	28.6% Gravel
2.00 mm	No. 10	59	
850 um	No. 20	45	
425 um	No. 40	34	57.9% Sand
250 um	No. 60	27	
150 um	No. 100	21	
75 um	No. 200	13.5	13.5% Fines

Report of Gradation

ASTM C-117 & C-136

RICHARD SEYMOUR III

Project Name	NEWCASTLE ME - MILL BRIDGE #0618 REPLACEMENT - EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES	Project Number Lab ID	23-1036 15032A
Client Exploration	VANASSE HANGEN BRUSTLIN (VHB) B-103	Date Received	8/7/2023
Material Source	2D, 5 FT	Date Completed Tested By	8/14/2023 RICHARD SE

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	L
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	92	
19.0 mm	3/4"	92	
12.5 mm	1/2"	84	
9.5 mm	3/8"	79	
6.3 mm	1/4"	74	
4.75 mm	No. 4	71	29.4% Gravel
2.00 mm	No. 10	59	
850 um	No. 20	45	
425 um	No. 40	33	55.5% Sand
250 um	No. 60	25	
150 um	No. 100	20	
75 um	No. 200	15.1	15.1% Fines

Report of Gradation

ASTM C-117 & C-136

Project Name	NEWCASTLE ME - MILL BRIDGE #0618 REPLACEMENT -	Project Number	23-1036
	EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES	Lab ID	15035A
Client	VANASSE HANGEN BRUSTLIN (VHB)	Date Received	8/7/2023
Exploration	B-104A	Date Completed	8/14/2023
Material Source	4D, 15 FT	Tested By	EMMA ROBERTS

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
450	C !!	400	
150 mm	0	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	89	
19.0 mm	3/4"	86	
12.5 mm	1/2"	81	
9.5 mm	3/8"	76	
6.3 mm	1/4"	72	
4.75 mm	No. 4	69	31.1% Gravel
2.00 mm	No. 10	60	
850 um	No. 20	52	
425 um	No. 40	46	40.8% Sand
250 um	No. 60	40	
150 um	No. 100	35	
75 um	No. 200	28.1	28.1% Fines

